MHD Simulations for ITER

Guido Huijsmans ITER Organization

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

Outline

- MHD in ITER
 - Disruptions
 - -ELMs
- MHD Simulation
 - -JOREK
 - Numerical methods
- Applications
 - -ELMs
 - -VDE
 - -QH-mode
- Conclusion

7th ITER International School, Aix-en-Provence, 2014 © 2014, ITER Organization

iter china eu india japan korea russia usa 🛛 © 20

IDM UID: XXXXXX Page 2

Magneto-Hydro-Dynamics (MHD)

- Theoretical model (H. Alfven, 1942)
 - description of the plasma as a electrically conducting fluid embedded in a magnetic field
 - Combining Navier-Stokes fluid equations with (pre-) Maxwell's equations
 - Conservation of mass, momentum, energy and flux
 - 19th century physics model
 - applications: plasmas, solar physics, astrophysics, magnetosphere, dynamos, ...
- MHD in tokamak plasmas
 - refers to large scale, magnetic, instabilities in the plasma
 - Driven unstable by pressure gradients and current (gradients)
 - Limits global pressure and current and local pressure, current gradients
 - accurately described by the MHD model

MHD Instabilities in ITER

- Disruptions, Vertical Displacement Events (VDEs)
 - Sudden termination of plasma, leading to high heat loads and electro-mechanical forces
- Edge Localised Modes (ELMs)
 - Repetitive MHD instabilities at the plasma edge leading to enhanced erosion of the plasma facing components (divertor)

- Neoclassical Tearing Modes (NTMs)
 - Magnetic islands driven by plasma pressure, leading to a reduction in the energy confinement (reduced plasma performance)
- Sawteeth
- Resistive wall modes
- Fast particle driven modes (Alfven eigenmodes)

ITER Disruptions

• Sequence of events:

- Major Disruptions (MD)
 - locked modes
 - density limit
 - beta limit
- Vertical Displacement Event (VDE, up/down)
 - loss of vertical position control
- The largest thermal loads occur Thermal Quench (TQ, 1-3ms)
- Major mechanical forces act on plasma facing components during Current Quench (CQ, 50-150ms)
- Runaway electrons will be generated during Current Quench

MHD Control in ITER

- Control of MHD instabilities in ITER is essential:
 - For machine protection:.
 - Transient heat and mechanical loads due to disruptions and ELMs are acceptable in current tokamaks but need to be controlled / avoided / mitigated in ITER
 - For performance optimization:
 - In the baseline scenario, to obtain Q=10 (at $\beta_N \sim 1.8$ with large sawteeth) **Neoclassical Tearing modes** (NTM) need to be suppressed. **Sawteeth** may also need to be controlled.
 - In advanced steady state scenario at Q=5 (at β_N ~3.0), **Resistive Wall** Modes (RWM) will need to be stabilized to operate above the no-wall limit.
 - Fast particle driven Alfven modes may also need to be controlled

MHD Control Methods in ITER

- Disruptions
 - Massive gas injection, MGI (or massive material injection, MMI)
 - Valves, shattered pellet injector
- ELMs
 - Resonant Magnetic Perturbations (27 in-vessel coils)
 - Pellet injection (~40Hz)
 - Vertical kicks, <10MA
- Neoclassical tearing modes
 - Electron cyclotron Heating/current drive (ECRH/ECCD)
- Sawteeth
 - Ion cyclotron heating (ICRH), ECRH/ECCD
- Resistive wall modes
 - In-vessel coils

ITER Disruptions

- Heat loads:
 - Plasma thermal energy 350MJ, spread over 10-30m^2 , in 1-3 ms
 - Heat load ~ energy / (area x time^{0.5}) ~ 100-2000 MJ/m²s^{0.5}
 - Melting of Tungsten at 50 MJ/m²s^{0.5} (2700° C)
- Mitigation requires >90% radiation to spread power over walls
 - Injection of impurities (Ne, He, D₂, <1.8x10²⁴ particles, gas and/or shattered pellets)
 - How to obtain an homogeneous distribution of radiation?
 - Number and position of injection points, amounts, time delay
 - Peaking factor of radiation influenced by MHD activity
 - Production of runaway electrons

Vertical Displacement Events (VDE)

- Elongated plasmas are vertically unstable
 - feedback control keeps the plasma in place
 - In ITER, vertical displacements up to 16 cm can be controlled
 - Failure of control leads to a vertical displacement event (VDE)
 - time scale determined by magnetic field diffusion through resistive wall

Wall Currents

- Movement of the plasma and decay of the plasma current cause a time variation of the magnetic field in the walls
 - Leading to induced currents in the metallic structures : eddy currents
- Direct contact of the plasma with the wall leads to a "current sharing"
 - Plasma current (partially) flows into the wall and back: halo currents
- Axi-symmetric VDEs lead to large vertical forces on the vessel

Asymmetric VDEs

- The shrinking of the plasma during a VDE can destabilize additional instabilities (kink modes)
 - Leading to asymmetric VDEs, vertical and sideways forces
 - Mode rotation may lead to resonant amplification, increasing the forces
 - Physics basis for expected behavior in ITER is high priority

Runaway Electrons

- During the Thermal Quench (1-3ms) the electron temperature drops from ~10 keV to ~10 eV
 - Increase in plasma resistivity ($\sim T^{3/2}$) leads to a large electric field
 - Electric field ~ resistivity x current density ~ 20V/m
- Friction forces decrease with increasing electron energy
 - Electric field accelerates electrons to relativistic speeds

• Runaway electrons : high energy electron beam

- ITER parameters: $I_{RE} < 10MA$, electron energy ~ 20MeV
 - Beam energy ~ 10MJ (kinetic), 200MJ (magnetic)
 - Can lead to deep melting of Be first wall
 - What fraction of magnetic energy is lost?
 - Runaway electrons must be mitigated (I_{RE} < 2MA)
 - Massive gas injection

H-mode, Edge Localised Modes

- H-mode regime: spontaneous stabilisation of turbulence at the plasma edge leads to large pressure gradients in the outer ~5% of the plasma
 – standard operating regime in ITER
- Edge pressure gradient is limited by an MHD instability (ballooning mode)
 - Edge Localised Mode (ELM) removes up to 10% of the plasma energy in ~200 microseconds

ELM in MAST [Kirk]

ELMs in ITER

• Extrapolation form current experiments indicates natural ELMs in ITER will be very large: $\Delta W_{ELM}/W_{ped} \sim 0.2$

- $W_{ped}{\sim}100{\text{-}}130MJ$: ΔW_{ELM} \sim 20 MJ

• Energy flux: ~10 $MJ/m^2~~(\tau_{ELM}{\sim}250{-}500\mu s)$

- P_{sol}=140MW (x20-40%) : f_{elm}=1-3 Hz

Tolerable ELMs

- Experiments in plasma gun facilities (QSPA in Troitsk) and e-beams (Judith, FZJ):
 - max. energy flux of **0.5 MJm⁻²**, no major reduction of the divertor lifetime
- Assume: no broadening + 2:1 in/out asymmetry + toroidal symmetry:
 - ΔW_{ELM} ~ 0.7~MJ , $~f_{ELM}{\sim}30{\text{-}}60Hz,~$ $8{\text{-}}16x10^3$ ELMs /Q=10 shot
 - mitigation factor 30 required
 - unmitigated ELMs possible at lower plasma currents
 - 6-9MA, depending on footprint broadening

droplet ejection tungsten >1.4MJ

ITER ELM control

- Two main ELM control methods foreseen on ITER
 - Application of (Resonant) Magnetic Perturbations
 - ELM Stabilisation (or mitigation)
 - Injection of small pellets:
 - Triggering of ELMs at given "pellet pacing" injection frequency

– Velocity 300-500m/s, Volume 17-34mm3, frequency 4-16Hz

- Other options:
 - Vertical Kicks
 - QH-mode(?)

• Resistive MHD equations:

-Evolution of density, velocity, temperature and magnetic field

$$\partial_t \rho = -\nabla \cdot (\rho \mathbf{v}) + \nabla \cdot (\mathbf{D} \nabla \rho) + S_{\rho},$$

$$\rho \partial_t \mathbf{v} = -\rho \mathbf{v} \cdot \nabla \mathbf{v} - \nabla (\rho T) + \mathbf{J} \times \mathbf{B} + \nu \nabla^2 \mathbf{v},$$

$$\partial_t T = -\mathbf{v} \cdot \nabla T - (\gamma - 1)T \nabla \cdot \mathbf{v} + \nabla \cdot (\bar{\mathbf{K}} \nabla T) + S_T,$$

$$\partial_t \mathbf{B} = -\nabla \times \mathbf{E} = \nabla \times (\mathbf{v} \times \mathbf{B} - \eta \mathbf{J}),$$

$$\nabla \cdot \mathbf{B} = 0$$

- Using vector potential:

$$\partial_t \mathbf{A} = \mathbf{v} \times (\nabla \times \mathbf{A}) - \eta (\nabla \times \nabla \times \mathbf{A})$$

Reduced MHD

- Formulation using electric potential (*u*) and magnetic flux (ψ):
 - Ansatz:

$$\vec{v} = -R\vec{\nabla}u(t) \times \vec{e}_{\varphi} + v_{\parallel}(t)\vec{B} \qquad \vec{B} = \frac{F_{0}}{R}\vec{e}_{\varphi} + \frac{1}{R}\vec{\nabla}\psi(t) \times \vec{e}_{\varphi}$$
Poloidal flux
$$\frac{1}{R^{2}}\frac{\partial\psi}{\partial t} = +\eta\nabla\cdot\left(\frac{1}{R^{2}}\nabla_{\perp}\psi\right) - \frac{1}{R}[u,\psi] - \frac{F_{0}}{R^{2}}\partial_{\varphi}u$$
parallel momentum
$$\vec{B}\cdot\left(\rho\frac{\partial\vec{v}}{\partial t} = -\rho(\vec{v}\cdot\vec{\nabla})\vec{v} - \vec{\nabla}(\rho T) + \vec{J}\times\vec{B} + \mu\Delta\vec{v}\right)$$
poloidal momentum
$$\vec{e}_{\varphi}\cdot\nabla\times\left(\rho\frac{\partial\vec{v}}{\partial t} = -\rho(\vec{v}\cdot\vec{\nabla})\vec{v} - \vec{\nabla}(\rho T) + \vec{J}\times\vec{B} + \mu\Delta\vec{v}\right)$$
Temperature
$$\rho\frac{\partial T}{\partial t} = -\rho v\cdot\nabla T - (\gamma-1)\rho T\nabla\cdot v + \nabla\cdot\left(K_{\perp}\nabla_{\perp}T + K_{\parallel}\nabla_{\parallel}T\right) + S_{T}$$
Density
$$\frac{\partial\rho}{\partial t} = -\nabla\cdot(\rho\vec{v}) + \nabla\cdot(D_{\perp}\nabla_{\perp}\rho) + S$$

• Extended to include diamagnetic and neoclassical flows

Boundary Conditions

- Plasma-wall interaction:
 - Wall is a strong pump for plasma
 - Fluid boundary conditions at the sheath entrance:
 - Parallel velocity:

$$\vec{v} \cdot \vec{B} \ge c_s \qquad \qquad \vec{v} \cdot \vec{n} \ge \frac{\vec{B} \cdot \vec{n}}{|B|} c_s$$

- Parallel energy flux:
- Potential:

$$nTv_{\parallel} + \mathbf{K}_{\parallel}\nabla_{\parallel}T = \gamma_{sh}\mathbf{K}_{\parallel}\nabla_{\parallel}T$$
$$e\phi = -T_{e}\ln\left(\frac{m_{i}}{2\pi m_{e}}\right)^{\frac{1}{2}}$$

- Magnetic field:
 - Fixed boundary (ideal wall) : $\delta \vec{B} \cdot \vec{n} \Big|_{wall} = 0$
 - Free boundary (resistive wall, vacuum, coils)
 - Continuity of total magnetic (electric) field

Non-linear MHD code JOREK

- Initial motivation: non-linear MHD simulations of Edge Localised Modes
 - Reduced MHD in toroidal geometry
 - Whole domain inside vacuum vessel, including open and closed field lines, x-point(s)
 - Divertor boundary conditions
 - Long time scales
- Evolving towards general MHD simulation code
 - Reduced and full (extended) MHD models
 - Including interaction with resistive walls, coils
 - JOREK team
- Characteristics:
 - C¹ iso-parametric Bezier finite elements (refinement)
 real Fourier series in toroidal direction
 - Fully implicit time evolution
 - PaStiX sparse matrix solver
 - Parallelisation MPI-OPENMP
 - 256 2048 cpus

Finite Elements: Basis Functions

 Representation of variables using functions with local support (i.e. finite only in a small number of "elements")

Finite Elements: Weak Form

• Construct a weak form of the equation(s):

$$R^{2}\nabla \cdot \frac{1}{R^{2}}\nabla \psi = -FF'(\psi) - R^{2}p'(\psi) \qquad \psi(R,Z) = \sum_{i,j=1}^{N,M} \psi_{ij}H(R-R_{i},Z-Z_{j})$$

- Multiply equation with each test function
 - Use test functions the same basis functions (Galerkin method)

$$\psi^*(R,Z) = H(R-R_i, Z-Z_j)$$

– Integrate over volume:

$$\int \frac{\psi^*}{R^2} R^2 \nabla \cdot \frac{1}{R^2} \nabla \psi dV = -\int \frac{\psi^*}{R^2} \left(FF' + R^2 p' \right) dV$$
$$-\int \frac{1}{R^2} \nabla \psi^* \cdot \nabla \psi dV + \int \psi^* \frac{1}{R^2} \nabla \psi \cdot \vec{n} dA = -\int \frac{\psi^*}{R^2} \left(FF' + R^2 p' \right) dV$$

- Gives a system of NxM equations for NxM unknowns

Iso-Parametric Finite Elements

- Anisotropy of MHD model between parallel and perpendicular directions
 - mode structures, heat conduction
 - advantageous to align finite elements with magnetic field (flux surfaces)
- Represent space with the same basis functions:
 - No loss of accuracy
 - Cubic Hermite:

© 2014, ITER Organization

Bezier Curves (1D)

- Bezier curves were defined by Pierre Bézier (1910–1999) at Renault in 1960s to describe parametrised curved surfaces
 - widely used in CAD-CAM, font definitions etc., OPENGL

$$\vec{B}(t) = \sum_{k=0}^{N} \vec{p}_k \frac{N!}{k!(N-k)!} t^k (1-t)^{N-k} \qquad 0 < t < 1$$

• Cubic Bezier curve defined by 4 control points:

$$\vec{B}(t) = \vec{p}_0 (1-t)^3 + 3\vec{p}_1 t (1-t)^2 + 3\vec{p}_2 t^2 (1-t) + \vec{p}_2 t^3$$

- (naturally) Isoparametric:
 - Both space and variables are described by the same Bezier curves

$$\vec{p}_k = (x, y, \psi)_k$$

C1 Continuity

Continuity requirement for a 1D Bezier curve (in 2D or 3D space)

• Physical variables and their first derivative are continuous in real space but not in the local coordinate

- as opposed to cubic Hermite finite elements $\alpha = 1$

• Additional freedom allows local mesh refinement

Bezier Elements

- Redefine Bezier curves in terms of quantities defined at the nodes:
 - Scale factors (property of an element)

 $h_{32} = \|\vec{p}_2 - \vec{p}_3\|$ $h_{34} = \|\vec{p}_4 - \vec{p}_3\|$

- Unit vectors u_i (property of a node)

$$\vec{u}_3 = \frac{\left(\vec{p}_2 - \vec{p}_3\right)}{h_{32}} = -\frac{\left(\vec{p}_4 - \vec{p}_3\right)}{h_{43}}$$

- Automatic C1 continuity
- Physical variables (unknowns): $\vec{p} = (R, Z, \psi)$ $h_{23} = \sqrt{(R_3 - R_2)^2 + (Z_3 - Z_2)^2}$ $\vec{u}_i = \begin{pmatrix} \delta R_i \\ \delta Z_i \\ \delta \psi_i \end{pmatrix}$

- Cubic Hermite finite elements are obtained with $h_{23}=h_{34}=1$
 - functions continuous in local coordinate (no refinement)

• 2D cubic Bezier patch defined by 16 control points

$$\vec{B}(s,t) = \sum_{k,m=0}^{N_1 N_2} \vec{p}_{km} \frac{N!}{k!(N-k)!} s^k (1-s)^{N-k} \frac{N!}{m!(N-m)!} t^m (1-t)^{N-m}$$

• C1 continuity between patches requires that the 4 boundary control points lie on a line with their neighbouring control points

C1 continuity, nodal vectors

• A corner of 4 patches is defined by 9 control points, $p_{ij}=(R,Z,\psi,...)_{ij}$

2

• Define 3 vectors (equivalence with cubic Hermite elements):

$$\vec{u} = (\vec{p}_{10} - \vec{p}_{00}) / h_u, \qquad h_u = \|\vec{p}_{10} - \vec{p}_{00}\|$$
$$\vec{v} = (\vec{p}_{01} - \vec{p}_{00}) / h_v, \qquad h_v = \|\vec{p}_{01} - \vec{p}_{00}\|$$
$$\vec{w} = (\vec{p}_{11} + \vec{p}_{00} - \vec{p}_{10} - \vec{p}_{01}) / (h_u h_v)$$

$$P_{-1,-1} \xrightarrow{P_{-1,0}} P_{0,0} \xrightarrow{P_{0,1}} P_{0,1} \xrightarrow{P_{0,1}} P_{1,1} \xrightarrow{P_{0,0}} P_{1,1} \xrightarrow{P_{1,0}} P_{1,0} \xrightarrow{P_{0,-1}} P_{1,0} \xrightarrow{P_{1,0}} P_{1,0} \xrightarrow{P_{1,0}} P_{1,0} \xrightarrow{P_{0,-1}} P_{1,0} \xrightarrow{P_{1,0}} P_{1,0$$

$$\frac{\partial \vec{p}_{-1}}{\partial s} = \vec{u}_0 = \frac{3}{2} (\vec{p}_{10} - \vec{p}_{00})$$
$$\frac{\partial \vec{p}_{-1}}{\partial t} = \vec{v}_0 = \frac{3}{2} (\vec{p}_{01} - \vec{p}_{00})$$
$$\frac{\partial^2 \vec{p}_{-1}}{\partial s \partial t} = \vec{w}_0 = \frac{9}{4} (\vec{p}_{11} + \vec{p}_{00} - \vec{p}_{01} - \vec{p}_{10})$$

- Continuity in local coordinates (cubic Hermite) requires scale factors h_u and h_v to be the same in the 4 elements
 - too restrictive, i.e. no local refinement

Convergence

- Verification on resistive MHD instabilities:
 - Linear growth rate n=1 resistive internal kink mode :
 - correct scaling error ~ h⁵

m=1 perturbation internal kink mode

Local Refinement

- A Bezier patch can be subdivided into smaller Bezier patches
 - Definition in node vectors and element sizes guarantees C1 continuity
 - Introduces constrained nodes
 - Connectivity matrix

- Choice: a constrained node cannot have a constrained parent
 - Refine neighbouring element to remove the constrained on the parent node

Adaptive Refinement (H. Sellama)

- Refinement of Bezier elements implemented in JOREK
- Tearing mode test case
 - using gradient of current density in refinement criterion
 - formal error based criterion?
 - refined solution remains C1 continuous

Refined grid (3 levels)

Electric potential

Adaptive Refinement (JOREK)

- Some control of grid regularity is necessary to avoid noise induced by the refinement
 - refine neighbours of an element satisfying the refinement criterion
 - remove single element 'holes'

refined grid (3 levels) without regularity control

7th ITER International School, Aix-en-Provence, 2014

JOREK : time stepping

- Fully implicit time evolution allows large time steps:
 - All variables implicitly updated in one step
 - time step independent of grid size
 - 0.5 5 Alfven times for ELM simulations to 10.000 Alfven times for slow growing tearing modes
- Linearised Crank-Nicholson scheme (or Gear's scheme):

$$\frac{\partial A(\vec{y})}{\partial t} = B(\vec{y}) \quad \Rightarrow \quad \left(\frac{\partial A(\vec{y}_n)}{\partial y} - \frac{1}{2}\delta t \frac{\partial B(\vec{y}_n)}{\partial y}\right)\delta \vec{y} = B(\vec{y}_n)\delta t$$

- Leads to very large systems of equations to be solved at every time step
 - sparse matrix solved using iterative method (GMRES)
 - Preconditioning matrices: one for each toroidal harmonic
 - solved using PaStiX parallel sparse matrix solver
 - recalculated when GMRES iterations too large
 - Degrees of freedom : up to $2x10^7$

Stabilisation

- Large (and non resolved) flows may lead to spurious oscillations
 - test case vortex mixing, vorticity equation

$$\frac{\partial w}{\partial t} = -[w, u] + v \nabla^2 w$$

- Use finite element stabilisation techniques
 - Taylor-Galerkin (TG2, TG3)
 - -Galerkin Least Square
 - -SUPG (Stream-upwind Petrov-Galerkin)

Taylor-Galerkin Stabilisation

• Use higher order time derivatives:

$$\frac{\partial w}{\partial t} = -[w, u] + v\nabla^2 w$$

$$w^{n+1} = w^n + \delta t \frac{\partial w^n}{\partial t} + \frac{1}{2} \delta t^2 \frac{\partial}{\partial t} \frac{\partial w^n}{\partial t} + \frac{1}{6} \delta t^3 \frac{\partial^2}{\partial t^2} \frac{\partial w^n}{\partial t}$$

$$\frac{w^{n+1} - w^n}{\delta t} = -[w^n, u^n] + v\nabla^2 w^n + \frac{1}{2} (\delta t) \frac{\partial}{\partial t} (-[w^n, u^n])$$

$$\frac{\partial}{\partial t} (-[w^n, u^n]) \approx [-[w^n, u^n], u^n]$$

• Weak form (implicit TG2):

$$v^* \frac{\delta w}{\delta t} = -v^* \left(\left[w^n, u^n \right] + v \nabla^2 w^n - \frac{1}{2} \left[\delta w, u^n \right] - \frac{1}{2} \left[w^n, \delta u \right] + \frac{1}{2} v \nabla^2 \delta w \right)$$

+
$$\frac{1}{4} \delta t \left[w^n, u^n \right] \left[v^*, u^n \right] + \frac{1}{8} \delta t \left[w^n, u^n \right] \left[v^*, \delta u \right] + \frac{1}{8} \delta t \left[\delta w, u^n \right] \left[v^*, u^n \right] + \frac{1}{8} \delta t \left[w^n, \delta u \right] \left[v^*, u^n \right] \right]$$

TG2 Stabilisation

• Stabilisation gives large improvement for this test case

TG2 Stabilisation

• At high resolution TG2 stabilisation may be too strong

- TG2 stabilisation implemented (and used) in JOREK
- Also hyper-diffusion terms

JOREK Parallelisation

- JOREK uses MPI and OPENMP
 - Parallelisation is necessary for both CPU and memory requirements
 - up to 2000 cores
 - Matrix construction:
 - Distribution (MPI) of finite elements over nodes
 - Using threads (OPENMP) inside each node:

```
!$omp do
do ife = 1, n_local_elms
   call element_matrix(ELM,...)
   !$omp critical
   call add_element_to_matrix(ELM)
   !$omp end critical
enddo
!$omp enddo
```

- very good scaling
- option: using MURGE library:

http://murge.gforge.inria.fr/files/include/murge-h.html

JOREK Parallelisation

- Matrix solution:
 - Preconditioned GMRES:
 - Use sub-matrices of each toroidal harmonic as preconditioner
 - divides factorisation of preconditioning matrix into N independent parts
 - » Block-Jacobi preconditioning
 - each Factorisation and Solve parallelised using N instances of PaSTiX sparse matrix library
 - » <u>http://pastix.gforge.inria.fr/files/README-txt.html</u>
 - Factorisation only done when number of GMRES iterations > 20-50

• GMRES:

- Matrix vector multiplication (MPI/OPENMP)
- Matrix solve (PaStiX)
- Parallelisation scaling is challenging
 - common for implicit fluid codes

Parallelisation Scaling

- JOREK strong scaling:
 - clock time as a function of cores at fixed problem size

JOREK Activities

- Disruption simulation, massive gas injection
 - Alexandre Fil (CEA), Eric Nardon (CEA)
- ELM simulations, ELM control RMPs
 - Francois Orain (CEA), Marina Becoulet (CEA), Jorge Morales (CEA), Stanislas Pamela (UKAEA), Matthias Holzl (IPP), Guido Huijsmans (ITER)
- ELM control, pellets
 - Shimpei Futatani (Barcelona)
- ELM control, QH-mode
 - Feng Liu (ITER)
- Tearing mode control, current drive
 - Egbert Westerhof (FOM), Jane Pratt (UK)
- VDEs
 - Matthias Holzl (IPP), Eric Nardon (CEA), Ksenia Aleynikova (Moskou)
- Numerical schemes
 - Boniface N'Konga (Nice), Emmanuel Franck (IPP), Ahmed Ratnani (IPP)
- Extended MHD models

ELM simulations in ITER geometry

- Evaluation of parallel fluxes to divertor and first wall requires open field lines crossing divertor and first wall
 - Finite element grid extended to first wall panels
 - Bohm boundary conditions on all surfaces:

$$v_{\parallel} = c_s \qquad \mathbf{K}_{\parallel} \vec{b} \cdot \nabla T = (\gamma - 1) n T c_s$$

- change of sign V_{//} at points where magnetic field is parallel to wall (outflow only)
- leads to local density maxima on the wall at $V_{\prime\prime}=0$
- Stationary equilibrium on millisecond time scale, not transport time scale
 - (quasi-) Stationary parallel and poloidal flows

ELM Simulation ITER Q=10 Scenario

• Equilibrium based on Corsica scenario "5.5keV"

-
$$T_{ped}$$
=5.2 keV, N_{ped} = 6x10¹⁹ m⁻³, δ_{ped} =6cm, I=15MA, (S=10⁶)

- Energy evolution (n=0,10):
 - Small convective ELMs, duration ~200 μs
 - comparable amplitude magnetic and kinetic perturbations
 - $\Delta W = 2MJ$, $\Delta W/W = 0.5\%$, $\Delta n/n = 2\%$

ELM Energy Losses

- Energy loss during ELMs is due to two mechanisms:
 - Formation of filaments
 - : convective energy loss
 - Formation of magnetic tangles : conduction parallel to field lines

Filaments

7th ITER International School, Aix-en-Provence, 2014

iter china eu india japan korea russia usa © 2014, ITER Organization

IDM UID: XXXXXX

ELM Energy Loss Distribution

- Parallel energy flux into the wall/divertor
 - mostly due to parallel losses along filaments on unperturbed field lines
 - -delay between outer and inner divertor
 - · consistent with parallel convection time
 - -power to first wall <10% of divertor

Outer Divertor Heat Flux

Plasma-Wall-Vacuum

- Plasma
 - Reduced or full MHD

 $E = -\nabla \varphi - \partial A / \partial t$

- Conducting structures (coils)
 - Some in contact with plasma

$$J = \sigma E \qquad E = -\nabla \varphi - \partial A / \partial t$$

$$\nabla\times\nabla\times A = -\sigma(\nabla\varphi + \partial A/\partial t)$$

• Vacuum

$$\nabla \cdot B = 0$$
$$\nabla \times B = \nabla \times (\nabla \times A) = 0$$

• JOREK-STARWALL

- Plasma: Ohms Law:
$$\frac{\partial \psi}{\partial t} = \eta R^2 \nabla \cdot \left(\frac{1}{R^2}\right) \nabla_{\perp} \psi - \vec{B} \cdot \nabla \Phi$$

• Weak form:

$$\int \frac{1}{R^2} \psi^* \frac{\partial \psi}{\partial t} dV = \int \psi^* \eta \nabla \cdot \left(\frac{1}{R^2} \nabla_\perp \psi \right) - \frac{1}{R^2} \psi^* \vec{B} \cdot \nabla \Phi dV$$
$$= \int \frac{1}{R^2} \nabla \left(\eta \psi^* \right) \cdot \nabla_\perp \psi dV - \oint \psi^* \eta \frac{1}{R^2} \left(\nabla_\perp \psi \cdot \vec{n} \right) dS - \int \frac{1}{R^2} \psi^* \vec{B} \cdot \nabla \Phi dV$$

 Vacuum solution (STARWALL) yields relation tangential to normal magnetic field at the computational boundary:

$$\nabla \boldsymbol{\psi} \cdot \boldsymbol{\vec{n}} = M \left(\nabla \boldsymbol{\psi} \times \boldsymbol{\vec{n}} \cdot \boldsymbol{\vec{e}}_{\varphi} \right)$$

- Insert in weak form:
 - Natural (Neumann) boundary condition will automatically be satisfied

$$\int \frac{1}{R^2} \psi^* \frac{\partial \psi}{\partial t} dV = \int \frac{1}{R^2} \nabla \left(\eta \psi^* \right) \cdot \nabla_\perp \psi dV - \oint \psi^* \eta \frac{1}{R^2} M \left(\nabla \psi \times \vec{n} \cdot \vec{e}_{\varphi} \right) dS - \int \frac{1}{R^2} \psi^* \vec{B} \cdot \nabla \Phi dV$$

- Eddy currents only, new scheme for halo currents is required

Simulation of VDEs (M. Holzl, IPP)

• VDE simulation in ITER (JOREK)

3D VDE (K. Aleynikova, MIPT)

- First 3D VDE Simulation in ITER geometry:
 - time scale ~5 ms

n=1 current perturbation

7th ITER International School, Aix-en-Provence, 2014

QH mode Plasmas

- ITER H-mode scenario is expected have have large Edge Localised Modes (ELMs) leading to large transient heat loads
 - ELMs will be controlled using magnetic perturbations (RMPs) or D₂ pellet injection
- Possible alternative : QH-mode plasma
 - H-mode confinement
 - ELM-free (no transient divertor heat loads)
 - Edge Harmonic Oscillation (EHO) causes density loss and steady state H-mode

Is QH-mode be a viable option for ITER?

- Validation of Non-linear MHD simulations on DIII-D tokamak
- Extrapolation to ITER

MHD Simulations of QH-mode (F. Liu, ITER)

- Simulation starting from initial state from DIII-D QH-mode plasma shows a growing external kink instability
 - External kink mode saturates non-linearly into a new quasi-stationary 3D state

Density Losses due to External Kink Mode

- Saturated Kink mode leads to increased density losses:
 - Pedestal density reduced by 25%
 - Total density by ~10%
- Temperature not affected
- Qualitative agreement with experiment

7th ITER International School, Aix-en-Provence, 2014

iter china eu india japan korea russia usa © 2014, ITER Organization

Future directions

- Aim: ITER simulation in realistic geometry/plasma parameters
 - Disruption (VDE) simulations and control methods
 - ELM and ELM control in ITER plasmas
- Extended MHD models
 - Reduced or full MHD (gyrofluid)
 - Comparison of models
- Including radiating impurities
 - Fluid or discrete particles
- Including halo currents
- Interaction with particles
 - Runaway electrons
 - Fast ions (fusion alphas, heating)
 - impurities
- Numerics
 - 3D FEM, splines
 - Solvers, scalability

Conclusions

- High priority ITER issues are related to MHD instabilities (Disruptions, ELMs and their control)
 - Extrapolation from current experiments to ITER requires validation of MHD simulations (i.e. comparison of simulations with experimental observations)
 - MHD simulations also important for physics understanding

7th ITER International School, Aix-en-Provence, 2014

- MHD simulations need to be more and more realistic
 - Extended MHD models
 - Exact geometry (use CAD models) interaction with conducting structures
 - Description of detached divertor

